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Abstract. For minimally-invasive surgery of the scaphoid, navigation based
on ultrasound images instead of fluoroscopy could reduce costs as well as
prevent exposure to ionizing radiation. We present a machine learning
based two-stage approach that tackles the tasks of image segmentation
and point cloud registration individually. For this, Deeplabv3+ as well as
the PRNet architecture were trained on two newly generated datasets.
An evaluation on in-vitro data results in an average surface distance er-
ror of 1.1 mm and a mean rotational deviation of 6.2◦ with a processing
time of 9 seconds. We conclude that near real-time navigation is feasible.

1 Introduction

Of all carpal bones, the scaphoid is the most frequently fractured one, account-
ing for about 60% of all fractures [1]. For diagnosis of fractures a comprehensive
exam including bi-planar radiography as well as computed tomography (CT) and
possibly magnetic resonance imaging (MRI) and ultrasound (US) is standard.
Given this rich image based pre-operative information, the decision upon con-
servative treatment using a cast, or operative treatment is based on the stability
of the fracture. Fractures of the proximal third as well as displaced fractures in-
dicate an operative treatment. Stable or non-displaced cases may also be treated
operatively to fasten the recovery [1].

Surgery can be performed in an open as well as minimally-invasive fash-
ion. While strongly dislocated cases require an open surgery, minimally-invasive
surgery (MIS) is recommended whenever possible due to minimized operative
trauma, preservation of carpal ligaments and faster recovery. During surgery,
the bone fragments are united using an osteosynthesis screw. The exact place-
ment of this screw is crucial for surgical success. In MIS, placement and valida-
tion, which takes place under continuous fluoroscopy, is a challenging task due
to the limited spatial perception of the three-dimensional position in the two-
dimensional projected radiographs. Furthermore, the patient and surgeon are
exposed to ionizing radiation. Therefore, this work investigates ultrasound as a
cheap and readily available alternative to fluoroscopy. Yet, ultrasound is limited
in terms of signal-to-noise ratio as well as occlusion.
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Intra-operative registration of ultrasound images to pre-operatively acquired
models is a common concept in navigated surgery. For surgery of the scaphoid,
which poses a hard problem due to the small size of the bone, several authors
proposed concepts and validated them in in-vitro, ex-vivo as well as in-vivo stud-
ies. The earliest procedure, proposed by Beek et al., involves a semi-automatic
heuristic, requiring the user to set seed points. Subsequently, the pre-operative
plan is manually aligned to the intra-operative ultrasound image and the position
is refined using the iterative closest point algorithm (ICP). While the method
proofed viable regarding realization of the surgical plan, it requires manual in-
teraction with reported times of 5-10 minutes [2]. Following a breakthrough of
ultrasound segmentation techniques, Anas et al. improved the procedure by in-
corporating phase symmetry pre-processing as well as statistical shape and pose
models into the segmentation process [3]. They enhance the symmetric high in-
tensity interfaces, like the bone surface, in the ultrasound image by computing
the phase symmetry. To distinguish bone from soft-tissue interfaces, the bone’s
shadow is incorporated as an additional feature. After that, a statistical shape
and pose model of all carpal bones is manually aligned to the ultrasound image.
The alignment is optimized in an Expectation Maximization framework using
Gaussian Mixture Models. This algorithm reduces the manual interaction while
at the same time improving the registration accuracy. They evaluated their tech-
nique in in-vitro [3], ex-vivo [4] and in-vivo [3] studies and achieved a processing
time of about 90 seconds.

In recent years, the computer vision community achieved great advances
in automatic semantic segmentation of the bone surface in in-vivo ultrasound
images. Pandey et al. reviewed 56 articles on this specific task [5]. Most of the
publications included fully automatic methods with a clear tendency to machine
learning based approaches in the recent past.

Given the success of Convolutional Neural Networks (CNN) on images the
concept was transferred to point sets. Wang et al. used a graph based approach
for convolution-like computations [6]. Their Dynamic Graph CNN (DGCNN)
is the backbone used in the Partial Registration Network (PRNet), a machine
learning based architecture for partial point set registration [7].

In this work, we present the first fully automatic as well as near-real time
capable algorithm for ultrasound based navigation of scaphoid fracture surgery.
We further proof its feasibility in an in-vitro study. We propose a two-stage
architecture, tackling the problems of segmentation and registration individually.
As machine learning based segmentation is a well studied problem, we focus on
evaluating the registration.

2 Materials and Methods

In order to allow a navigated fixation of scaphoid fractures, a preoperative vir-
tual object, including the surgical plan, has to be intra-operatively registered
to the therapeutical object. For this purpose, the aforementioned two-stage ap-
proach is proposed (see fig. 1): in a first step, a tracked 3D US probe is used for
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the acquisition of slice images, which are subsequently segmented by a neural
network. The pixels labeled as scaphoid surface are then skeletonized and uni-
formly sampled to obtain a surface point set (depicted in red). In a second step,
the point set of the source model (depicted in blue) is registered to this sampled
point set, again using a neural network.

2.1 Architectures

For the task of semantic segmentation, the DeepLabv3+ [8] architecture is se-
lected. It is characterized by an encoder-decoder structure with atrous separable
convolution for spatial pyramid pooling. In combination with a MobileNetv2 [9]
backbone it offers a compromise between performance on the one hand and a
reduced number of trainable parameters on the other hand, which is favorable
given the rather small size of the training data set.

The subsequent task of registration is quite challenging: Points sampled from
a partial surface have to be registered to points representing the complete surface,
without real point correspondences and disturbed by errors of segmentation. The
task is further complicated by the fact that the use of shared architectures for fea-
ture extraction requires the point sets to be of equal size, which in our case leads
to different spatial resolutions. To meet these challenges, the PRNet architecture
in combination with a DGCNN backbone seems most promising and is employed
in the course of this work. The DGCNN utilizes a convolution-like learning of
filters on dynamically updated k-nearest neighbors for the extraction of local
and global point features; in PRNet, these feature vectors are co-contextualized
by a Transformer, which in combination addresses the difficulty of partial-to-full
registration. Furthermore, PRNet aims at establishing non-bijective correspon-
dences with variable sharpness by using gumbel softmax, which addresses the
lack of real correspondences and the difficulty of different spatial resolutions.

Fig. 1. Intra-operative procedure for the registration of therapeutical object and virtual
object: the US image slices acquired by a 3D US probe are fed into a segmentation
network. The resulting masks are thinned and sampled to a partial point set, which is
registered to the point set obtained from CT.
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2.2 Datasets

In order to train models for the tasks of semantic segmentation and registration,
two datasets are created. The first dataset is created for semantic segmentation of
carpal bones in US images. It is based on four printed carpal phantoms, two male
and two female, and consists of automatically annotated US phantom images.
For the automated annotation, tracked phantoms are placed in a water basin,
where a tracked 3D US probe is then used for the acquisition of 22 volume images
per phantom, with 81 image slices each. By transforming the respective carpal
model to these US volume images of the carpal phantom, a surface annotation is
generated. Since neighboring slice images are very similar, only every third slice
is included, resulting in a total of 2376 annotated US images. These are split
according to the underlying wrist phantom for the creation of similar composed
and hence comparable datasets. With four wrist phantoms available, images are
split in 1782 images (three phantoms) for training and 594 images (one phantom)
for validation and testing.

The second dataset is created for the training of point-based scaphoid regis-
tration. It is based on 105 scaphoid models provided by Moore et al. [10], which
were generated from CT images of both male and female patients. From these
105 models, a statistical shape model (SSM) is derived in order to obtain a
greater variety of data. The resulting dataset consists of pairs of aligned point
sets with equal sizes of 1024 points. For each of these pairs of point sets, the
first set is derived from the SSM with variances in the range of ±2 standard
deviations (SD), while the second is generated by synthetic sampling of the first
set, which imitates US imaging. The dataset contains about 74,000 pairs of data,
divided into about 41,000 pairs for training and about 16,500 pairs for validation
and testing respectively. Fig. 1 examplarily shows a pair of point sets from the
created dataset in the registration section.

2.3 Training

For training of the segmentation model, weights pretrained on the PASCAL
VOC dataset are used as initialization. Using Adam for optimization and a set
of hyperparameters derived from grid search, the final segmentation model is
obtained by early stopping after 156 epochs based on results on the combined
validation/test set.

For training of the registration model, ground truth (GT) has to be gener-
ated from the aligned pairs of point sets by applying a random transform to the
sampled point set. This random transform consists of a rotation around each
axis uniformly sampled from [0◦, 45◦], and a translation uniformly sampled from
[−25%, 25%] of object size. Again, Adam is employed for optimization, with hy-
perparameters determined by grid search; the final registration model is obtained
by early stopping after 14 epochs based on results on the validation set.
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Table 1. Rotational and translational registration errors on point sets derived from
segmentation GT and segmentation results, with mean and SD respectively.

Point sets derived from GT Point sets derived from Segmentation

MAE(R) / ◦ MAE(t) / mm MAE(R) / ◦ MAE(t) / mm

Initial 23.17 ± 7.14 3.29 ± 1.09 22.02 ± 7.35 3.72 ± 1.34

ICP 24.68 ± 14.05 2.23 ± 1.42 22.77 ± 13.62 2.88 ± 1.82

PRNet 5.29 ± 3.79 0.92 ± 0.47 10.22 ± 7.37 1.73 ± 1.16

PRNet+ICP 1.42 ± 3.94 0.13 ± 0.25 6.20 ± 8.80 0.72 ± 1.50

2.4 Testing

Test results for registration are reported for two different test scenarios, which
are based on the segmentation validation/test dataset: registration results on
point sets derived from GT, in comparison to results of registration on point
sets derived from segmentation results. For each of the two test scenarios, initial
errors are compared to registration results of ICP and PRNet. Moreover, results
of a combination of PRNet and ICP are included, with ICP starting from the
estimated transformation of PRNet. Results of registration are measured by
means of mean absolute error (MAE) between GT and predicted transformation,
decomposed into a rotational error MAE(R) and a translational error MAE(t).
Furthermore, the surface distance error (SDE) is computed as a point to surface
distance. All experiments are repeated 10 times, results are reported as mean
and SD.

3 Results

Test results for registration can be seen in Tab. 1, with results on point sets
derived from GT in the left column, and results of registration on point sets
derived from segmentation results in the right column. The SDE after registra-
tion of GT is 0.49 mm±0.02 mm and after registration of predicted segmenta-
tions is 1.10 mm±0.86 mm. Computation times for the whole process add up
to 9.09 s±0.89 s, of which the major part is attributed by segmentation with
7.70 s±0.75 s, while only 0.21 s±0.03 s are needed for registration.

4 Discussion

The proposed two-stage approach removes the need for manual interaction while
simultaneously reducing the processing time to 9 seconds. This is an at least ten-
fold improvement over previous methods [2,3,4]. Our evaluation results in an axis
deviation of 6.2 ◦ MAE and 1.1 mm SDE, which is roughly equal to 5 ◦ absolute
deviation and 1-1.2 mm SDE reported by Anas et al [3]. In an ex-vivo evaluation
of their method, Anas et al. successfully performed 10 out of 13 screw placements
[4]. Thus, for clinical application, the overall error needs to be reduced further.
Additionally, given the limitation to non-displaced fractures, only few patients
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could receive an ultrasound-based treatment, yet. Extending the application to
displaced fractures requires an evaluation of bone fragment registration as well
as visibility. An obvious limitation of this work is the evaluation on in-vitro data,
which is a comparably simple task. Finally, the absence of an independent test
set limits the significance of the segmentation evaluation of this study.

As shown in Tab. 1, scaphoid registration poses a difficult task, as the gold
standard algorithm ICP is not able to converge to the global minimum solution.
Combining it with a machine learning based global prior registration however,
our approach achieves significant improvements. The segmentation on the other
hand is not yet sufficiently fast and precise, as can be concluded from the high
errors when processing segmented point sets. Future work will therefore focus
on improving the first stage: A preceding classifier may reduce the number of
false positive segmentations. Lightweight architectures designed for real-time
segmentation could speed up the computation. Additionally, the pipeline needs
to be adapted to and evaluated on in-vivo data.
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