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Abstract

Objectives: Ultrasound is a widely used imaging tech-
nology that allows for fast diagnosis of a broad range of
illnesses and injuries of the musculoskeletal system.
However, interpreting ultrasound images remains a chal-
lenging task that requires expert knowledge and years
of training for each exam. One crucial step for the long-
term goal of automatic diagnosis is pixel wise semantic
segmentation.

Methods: In this work, several state-of-the-art semantic
segmentation networks were trained on a new dataset of
manually annotated ultrasound images depicting the
distal femur.

Results: PSP-Net achieved the best overall performance
with an average surface distance error (SDE) of 0.64 mm.

Conclusions: We recommend the PSP-Net architecture
for semantic segmentation of bone surfaces.
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Introduction

Ultrasound is a widely established imaging technology. It
is used in virtually every medical field, ranging from
ophthalmology over mammography to orthopedics. How-
ever, interpretation of ultrasound images is a challenging
task and its usage is limited to experts. Automatic semantic
segmentation could enable less experienced personnel to
utilize ultrasound. Based on the outline of bone structures
in the image for example, standard diagnostic measure-
ments like the alpha and beta angle for DDH or femur to
tibia offset for ACL rupture diagnosis can be performed. By
combining multiple segmented B-Mode images, three-
dimensional models for patient-specific implant planning
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e.g., in total knee arthroplasty (TKA) or biomechanical
analysis can be constructed.

Several limitations complicate this automation: The
signal to noise ratio in ultrasound images is very low.
Furthermore, the field-of-view of common ultrasound
transducer is limited to several centimeters in both, depth
and width. The appearance of the bone surface in the image
is highly dependent on its local topology and the inclina-
tion angle of the ultrasound beam [1]. At the same time, it
resembles soft tissue interfaces. Only experienced sonog-
raphers are able to cope with these complications. On the
other hand, ultrasound is a cheap alternative to other im-
aging techniques like magnetic resonance imaging (MRI)
or computed tomography (CT) and does not harm the pa-
tient in any way. Finally, it allows for real-time interaction
with the patient. If the limitations in terms of image quality
can be overcome, ultrasound has the potential to reduce
health care costs strongly while providding fast and reli-
able diagnosis at the same time. Providing automatic and
real-time semantic segmentation could improve the ease of
use and reproducibility, therefore enabling unexperienced
medical personal to conduct a variety of diagnostic exams.

Since the record-breaking success of AlexNet, a con-
volutional neuradl network (CNN), on the ImageNet clas-
sification challenge [2], CNNs are applied on many other
tasks, including semantic segmentation. The U-Net [3], a
fully convolutional encoder-decoder variant, got very
popular in medical image processing and a high number of
publications apply this architecture to this day. However,
the evolution of CNNs did not stop in 2015, and several
improvements were proposed since then. Furthermore,
gathering annotated training data is an especially difficult
and expensive task for medical images.

Therefore, this work contributes to the long-term goal of
automatic interpretation of ultrasound images two-fold: (1)
We compare several state-of-the-art semantic segmentation
architectures from the non-medical field, using (2) a new
annotated dataset of ultrasound images of the knee joint.

Related work

Many surveys and review papers provide an overview of the
state-of-the-art in medical image processing with deep
learning. Most of these cover a wide range of different
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imaging modalities, typically including MRI, CT, arthroscopy
and Ultrasound, and tasks such as registration, classification
and segmentation [4-6]. Several publications focus on a
single task (segmentation [7]), architecture (CNN [8]) or
imaging technology (Ultrasound [9, 10]). The evaluation
metrics differ strongly, typically including the dice coef-
ficient or an intersection-over-union-based computation,
as well as the average and maximal surface distance error
(SDE). However, the architectures applied in these publi-
cations reveal a considerable time lag to the non-medical
computer vision community. A high number relies on the
famous U-Net and its variants, which dates back to 2015.
Challenges are a common method for an objective
comparison of different architectures on a certain task. For
semantic segmentation, popular benchmark challenges
include the PASCAL Visual Object Classes (VOC), ADE20K,
Cityscapes and COCO Stuff [11-14]. The leaderboards of
these update every few months with new architectures
achieving all-time highs. For medical images, there are
only a few challenges, which also come with limited
dataset size. For ultrasound segmentation, these include
nerve, intra-vascular vessel [15] and cardiac segmentation
[16]. To date and the best of our knowledge, there is no
published challenge on ultrasound bone segmentation.

Methods

Our dataset consists of 36 volumetric ultrasound images, depicting the
distal femora of three study participants. The data was recorded with a
SonixTouch Q+ machine (Ultrasonix, Peabody, USA). The images have
a width of 381 and height of 465 pixels with 600 slices in each volume
image, totaling in 21,600 images. It should be noted, that the isotropic
pixel spacing of 0.1 mm results in a high correlation of these neigh-
boring images. We therefore manually segmented visually different
slices with two classes, femur and background. We excluded images
without visible bone surface, totaling in 3,707 labeled images. Only
the bone response is segmented, not the pitch black ‘bone shadow’
area below. To counter class imbalance issues, we segment a thick
line. See Figure 1 for an example. The data is split into two sets,
training and validation, with 30 and six vol images, respectively. Each
dataset depicts different subjects. The training was performed on two
Volta 100 GPUs on the RWTH Aachen University GPU Cluster.

We applied several state-of-the-art semantic segmentation net-
works from the non-medical domain, which achieved the highest
performance in several challenges: Deeplabv3+ [17] on PASCAL VOC
2012, HRNetv2 + object-contextual representation (OCR) [18] on City-
scapes, COCO Stuff and PASCAL Context and PSP-Net [19] on ADE20k.

All of these challenges differ from the task of medical image
segmentation. The number of training images available, as well as the
number of classes to segment is higher. Furthermore, all datasets
consist of natural images with three color channels. The objects to be
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Figure 1: Ultrasound image (A), ground truth (B), prediction (C) and
extracted bone surfaces (D) for MobileNetv2. Ground truth surface in
green, prediction in red.

segmented show a big variety, including the fine-grained ‘object’
category and ‘stuff segmentation, like grass. Therefore, we apply
these networks on our dataset and analyze which architecture choices
are beneficial for the task of ultrasound bone segmentation. We also
apply the U-Net for reference.

As hyper parameter tuning is crucial for performance of deep
learning architectures and we do not want it to invalidate the com-
parison, we try to minimize and even out the effort spent on this.
Optimized parameters include learning rate, batch size and data
augmentation intensity. Training is aborted when the evaluation
metrics on the validation set increase over five epochs. Custom data-
augmentation techniques conform to ultrasound image characteris-
tics are applied, including left-right flipping, varying brightness and a
combined cropping, shearing and resizing.

Another essential aspect is the model capacity. Given a rather
small medical data set, overfitting may likely be an issue. We opted for
MobileNetv2 as a Deeplab variant with small capacity to counter this.
However, due to non-convergence issues, we did not train from
scratch but pre-trained on PASCAL VOC.

Several evaluation metrics are analyzed on the validation set. The
ground truth and the predicted bone masks are thresholded and
thinned to a single line. Following, the mean SDE and Hausdorff
distance, directed as well as symmetric, are determined. These metrics
provide an estimate of the accuracy of the segmentation and allow for
detection of over-segmentation. We also count the number of empty
segmentation masks in order to detect under-segmentation. We did
not evaluate any area-based metrics like the dice or Intersection-over-
Union, as our ground truth masks are thin lines, which are prone to
low surface overlap, even for good segmentations. See Table 1 for an
overview of the different architectures.
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Table 1: Architecture overview. The number of trainable parameters

gives the model size. HR-Net is trained using online hard example
mining (OHEM).

Model Model size Loss function Pre-training
U-Net 31.031.688 Focal loss [20] No
MobileNet 2.141.762 Focal loss Yes

PSP-Net 49.066.948 Cross entropy No

HR-Net 65.847.122 OHEM-CE No
Results

As expected, U-Net achieved low errors. As can be seen in
Figure 2, the average SDE of 0.87 mm is promising. The
small difference between the directed (4.2 mm) and sym-
metric (4.9 mm) Hausdorff distance error indicates a good

trade-off between over- and under-segmentation. Still, in
five out of 384 images the bone was not segmented.

HR-Net, combined with the OCR module, achieved
similar results with an average SDE of 0.88 mm, a lower
Hausdorff of 3 mm directed and 4.6 mm in the symmetric
case. The number of not segmented images was slightly
higher with 16.

The stand-alone HR-Net performed better in terms of
the average SDE of 0.63 mm and Hausdorff distance of
2.4 mm with a similar symmetric Hausdorff distance of
4.8 mm. In addition, all bone surfaces were segmented.

MobileNetv2 was able to further reduce the average
SDE down to 0.56 mm. Again, no bone surface was missed
and the Hausdorff distance of 2.5 mm shows a high
robustness. The high symmetric Hausdorff of 6.4 mm on
the other hand revealed over-segmentation issues.

Finally, PSP-Net combined a low average SDE of
0.64 mm with a good directed (2.6 mm) and symmetric
(4.2 mm) Hausdorff distance. Only a single image was
falsely segmented to contain no bone surface.

Discussion

U-Net showed a reasonable overall performance with a good
trade-off in over- and under-segmentation. The other ar-
chitectures’ average SDE approaches the in-plane resolution
of about 0.5 mm per pixel in the gold standard for bone
imaging, CT. Similarly, to the Hausdorff distance, slice
thickness in CTs is in the range of several millimeter. This is
sufficient for several tasks: In pre-operative implant size
selection in TKA for example, a rule-of-thumb for the
maximal overhang of the implant over the bone is 3 mm [21].
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Figure 2: Different metrics over epochs on the validation set. U-Net
in magenta, HR-Net in gray, HR + OCR in red, MobileNetv2 in teal and
PSP-Net in petrol. Non-smoothed values in transparent. See colored
figure online.

We could not observe an advantage of using the OCR
module. We hypothesize that the low number of classes
combined with strong texture differences within the
background class limit the benefit of the region context. In
a setup, where the background class is split into the indi-
vidual tissues this may change.
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MobileNetv2 shows promising results while main-
taining a lightweight architecture. However, it remains
unclear whether the low capacity or rather pre-training
enabled its success.

For PSP-Net, the training parameters are most likely
not yet optimal. After only three epochs, the model starts to
overfit. A different learning rate policy may help to improve
its segmentation. Still, it performed best.

To further objectify this architecture comparison,
extensive testing under versatile conditions is required.
These include varying dataset sizes, as deep learning
models depend on a big data basis. Pre-training, as well as
synthetic images can help to increase the dataset size
drastically. Assumingly, high capacity architectures like
the HR-Net will profit stronger from this. Additionally, the
segmentation mask definition may vary: Defined as is,
strong class imbalance is a task specific challenge, which
may be eased by labeling the whole bone volume instead of
the bone response only. Furthermore, an intense hyper
parameter tuning could once again alter the results of this
evaluation. Keeping in mind these limitations, we recom-
mend using the state-of-the-art PSP-Net for semantic seg-
mentation of ultrasound images in orthopedics.

Future research will focus on an alternative loss
function using distance transform images. To confirm the
generalization of our analysis, a third test set will be ac-
quired and evaluated. Additionally, the manual segmen-
tation quality will be examined to determine a lower error
bound for this specific dataset and to further lower it.
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