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Abstract 

Fully-automatic and reliable segmentation of bone surface in volumetric ultrasound 

images could enable the use of this imaging technique for a variety of tasks, including 

diagnosis of hip dysplasia, ACL injuries in the knee as well as patient-specific 

instrumentation and implants in total hip or knee arthroplasty. Interpretation of 

volumetric data is a hard task, even for humans. In this study, we investigate the benefit 

of using the spatial information of a third dimension on the task of segmentation of the 

distal femoral bone. A data set of 52 volumetric image with 12771 image slices is split 

into a training and test set. We employ 2D and 3D variants of the nnUNet architecture 

and compare the accuracy in terms of dice coefficient and performance in terms of 

inference time. Note that processing of 2D data allows for a bigger model due to less 

memory consumption. Both architectures achieve a Dice of about 82% while the 2D 

variant shows less false positive segmentation and achieves a surface distance error of 

0.44mm, in contrast to 0.81mm for the 3D variant. At the same time, the former infers 

three times faster at about 10 seconds per volume image. Apparently, model size has a 

bigger positive effect than the additional spatial information. Thus, we recommend 

considering 2D segmentation architectures even for volumetric segmentation tasks. 

1 Introduction 

Ultrasound is widely used in orthopedics for diagnostic purposes. It provides insight into the 

patient’s body at chair side without causing any radiation exposure. At the same time, the costs of a 

sonography are low compared to other imaging techniques like computed tomography (CT) or magnetic 

resonance imaging. However, correct interpretation of ultrasound images require years of experience. 

Recent advances in fully automatic image processing may enable unskilled clinical personal to make 

use of this imaging technology, by training a machine-learning model to learn the skills of an expert. 

Segmentation of the bone surface is one aspect of the automatic diagnosis. Tasks like classification of 

hip dysplasia in infants [1], screw placement for fixation of bone fractures [2] or manufacturing of 

patient-specific implants and instruments [3] require an accurate delineation of the bone. Computed 



tomography, which defines the gold standard for computer-assisted orthopedic surgery related tasks, 

comes with an in-slice resolution of about half a millimeter, defining the target accuracy of our model. 

On the other hand, processing time is a crucial factor. During an exam at chair side, several volume 

images may be acquired to cover the area relevant for diagnostic purposes. For the technology to be 

accepted, processing should not prolong the exam time noticeably. As such, processing should be in the 

range of minutes. For intra-operative applications, the acceptable processing time is even lower. We 

define a target of ten seconds. 

In segmentation of volumetric images using convolutional neural networks (CNNs), the two metrics 

of accuracy and processing time oppose each other: While 2D images can be processed in real-time, 

incorporation of a third spatial dimensions greatly increases the computational burden. The trade-off 

between computational expense and bone surface reconstruction accuracy is unclear. Even though 

various works have been published on one or the other, the literature is missing a direct comparison: 

There is no common data set and implementations of CNNs vary greatly in network structure, size or 

hyperparameters.  

As such, we investigate the trade-off of incorporating 3D spatial information in segmentation of 

bone surface in ultrasound images regarding (1) accuracy und (2) computational costs in a fair 

benchmark environment. 

 

2 Materials and Methods 

Fifty-two volume in-vivo images were acquired with a SonixTouch Q+ and a mechanically swiping 

probe (Ultrasonix, Peabody, USA), totaling in 12771 image slices. The images depict the right femur 

of three male subjects of age 26-28. While the width of the images is fixed to 418 pixels, the height 

varies from 289 to 511 pixels depending on the patient’s body weight. Only slices that show actual bone 

surface are included and thus the depth varies from 139 to 378. The images exhibit an isotropic pixel 

spacing of 0.1mm. The bone surface were labeled manually using the open source software 3DSlicer. 

This data set is processed either as 2D or 3D data. In both cases, the images, labels and splits are the 

exact same. 

The most commonly used CNN in medical image processing is the U-Net. Various extensions were 

introduced over recent years that altered the training scheme, loss function, convolution operation or 

model architecture. However, none of these variations proofed to be beneficial over a wide range of 

tasks. Isensee et al. [4] showed that adaption of the networks hyperparameters to the data set is more 

important than structural changes. They developed the “no new U-Net” (nnUNet) framework that 

adjusts the network to the data at hand and established a new state of the art in 49 public medical 

segmentation challenges. As such, it provides an ideal benchmarking tool that does not require any 

manual fine-tuning. Furthermore, due to its automatic adaption, no additional validation set for fine-

tuning is necessary. 

The nnUNet offers a variety of models, including a 2D and 3D one, among others. All 

hyperparameters were set by the framework, just the architecture type was manually set to the before 

mentioned options. The networks were trained for three days on a Volta 100 GPU provided by the 

RWTH Aachen University GPU Cluster. For measuring inference time, just the prediction itself is 

measured, not the data generation. Model size or capacity was 40.801.632 trainable parameters for the 

2D model and 31.167.584 for the 3D model. Note that the framework defines a bigger model for the 

2D case as less data needs to be loaded into VRAM, allowing for a more complex model. 



  
Figure 1: Segmentation of bone in a representative volumetric ultrasound images. 2D (blue, left) and 3D (red, 

right) predictions are shown along with the manual ground truth labels (green). Most of the surface was correctly 

detected in both cases. Note the tendency to segment thin slices in the 2D case and the large false positive 

segmentation in the 3D case (purple circle). In some areas, spatial context may have helped the 3D model to detect 

the bone surface (red circle). 

3 Results 

Fehler! Verweisquelle konnte nicht gefunden werden. shows all metrics for both architectures. 

The 3D variant has a lower number of trainable parameters and as such, a lower capacity compared to 

its 2D counterpart. Still, the inference time is higher, on average 90ms compared to 27ms per slice and 

34.2s compared to 10.3s per volume. The 3D variant achieves a high dice of 82.26. The 2D variant 

performs similar with 81.38. We further thin out the segmentation in the 2D image slices to obtain a 

surface and compute the average symmetric surface distance error (SSDE) in 3D. In this regard, the 3D 

model performs noticeably worse with an average error of 0.81mm in contrast to 0.44mm for the 2D 

model. Investigating the individual volume images, we observe substantial false positive segmentation 

in four of the ten volumes for the 3D model in contrast to just one such case for the 2D model. See 

Figure 1 for a qualitative evaluation on such a volume image. 

 

 

Model Capacity (# parameters) Inference time Dice SSDE 

(mm) per slice (ms) per volume (s) 

2D 40.801.632   27 10.3 81.38 0.44 

3D 31.167.584 90 34.2 82.26 0.81 

Table 1: All test results for the 2D and 3D architectures: Model capacity, inference time per slice and volume 

as well as dice coefficient and average symmetric surface distance error (SSDE). 

4 Discussion 

Detection of bone surfaces is much easier for a human if information on the surrounding tissue is 

available. Surprisingly, we could not see any benefit of using 3D spatial information for the task of 

femur bone segmentation in volumetric ultrasound images with CNNs. Apparently the increased model 



size has a stronger positive impact than the additional spatial cues. At the same time, the computational 

burden increases 3-fold. Processing of a full volume may take up to 34 seconds in case of the 3D model, 

not meeting the requirements set for intra-operative use. The 2D model on the other hand comes close 

to the goal of 10 seconds. However, both architectures exhibit very good performance compared to 

other publications on the segmentation of bone in ultrasound images that report average dice errors of 

0.75 and 0.89 [5, 6]. Note that the latter uses a slightly different metric definition. The 2D model even 

achieves an accuracy comparable to CT resolution. Accordingly, at the current state we recommend to 

consider 2D segmentation even for volumetric images.  

There are several limitations to this study, the most important being that only a single data set and 

a single architecture is tested. Furthermore, the study cohort is very small and homogeneous and the 

just a single ultrasound probe was used. The orthopedic ultrasound research community is missing a 

versatile and public data set, which could strengthen the reliability of studies like this one. Additionally, 

any evaluation on test images using common metrics needs to be validated in surgical practice. 

Regarding inference, details of the soft- and hardware may have a strong impact and as such, the 

reported times should be interpreted with caution. Recently, the vision transformer architecture has been 

established, which computes global interaction of image patches and as such may leverage 3D spatial 

information better [7]. The inclusion of these architectures into the analysis is one aspect of our ongoing 

research. 
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