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Abstract: For the percutaneous fixation of scaphoid fractures, 

navigated approaches have been proposed to facilitate screw 

placement. Based on ultrasound imaging, navigation can be 

carried out in a cost-effective and fast manner, furthermore 

avoiding harmful radiation. For this purpose, a fast and 

efficient architecture for the automated segmentation of 

scaphoid bone in ultrasound volume images is needed. 

Methods: For 2D segmentation of the scaphoid, two 

architectures are taken into account: 2D nnUNet and 

Deeplabv3+. These architectures are trained and evaluated on 

a newly created dataset consisting of 67 annotated in-vivo 

ultrasound volume images (4576 slice images).  

Results: In terms of Dice coefficient, the 2D nnUNet 

achieves 0.67 compared to 0.57 for the Deeplabv3+. In terms 

of distance metrics, the 2D nnUNet shows an average 

symmetric surface distance error of 0.66mm, while the 

Deeplabv3+ achieves 0.55mm. 

Conclusion: Fast and accurate segmentation of the scaphoid 

in ultrasound volumes is feasible. Both architectures show 

competitive results. 

Keywords: Ultrasound imaging, machine learning, 

segmentation, scaphoid fixation 

1 Introduction 

The scaphoid is the largest carpal bone in the human wrist, see 

Figure 1. It is prone to fractures, for example after a fall on the 

extended wrist [2]. Diagnosis involves different imaging 

techniques like ultrasound and computed tomography. 

Depending on the location and type of fracture, treatment of 

such an injury may be nonsurgical using a cast. In certain 

cases, an operative treatment offers an alternative that comes 

with faster recovery time. Here, an osteosynthesis screw is 

placed in the bone fragments, pulling them together and 

facilitating healing. Placement of this screw may be performed 

in a minimally invasive fashion, sparing the surrounding soft 

tissue. In this case, imaging is required and conventionally, 

fluoroscopy is used. However, this imaging technique exposes 

both, the patient and the surgeon, to ionizing radiation [3]. 

Further, it depicts a 2D projection of the 3D geometry, 

rendering positioning along the projection direction difficult 

[4]. 

Ultrasound offers an alternative: It is a cost-effective and 

widely available imaging technique with real-time capability. 

It furthermore allows for 3D imaging. However, its signal to 

noise ratio is very low and in contrast to fluoroscopy, soft 

tissue interfaces resemble bone surfaces. Furthermore, 

interpretation of volumetric images is a difficult task for 
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Figure 1: Anatomy of the human wrist. Adapted from [1]. 
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humans. In a previous work [5], our group presented an 

automated two-stage approach based on a concept of Beek et 

al. [6]: Pre-operatively, a 3D model of the scaphoid is acquired 

using computed tomography and the screw position is planned. 

Intra-operatively, volumetric ultrasound images are recorded 

and the scaphoid bone is segmented. Then the intra-operative 

model is registered to the preoperative one, allowing a transfer 

of the planned screw position to the current surgical setup. In 

a first study we proofed the feasibility of the concept in-vitro. 

The contribution of this paper is the adaption of the 

segmentation to in-vivo ultrasound images, while maintaining 

its speed and automation. 

2 Related Work 

Beek et al. [6] presented the first work on the segmentation of 

the scaphoid in ultrasound images. While their pipeline 

proofed to be accurate with a surface distance error (SDE) of 

0.5mm, the process incorporated manual placement of 

landmarks. Starting from the landmarks, they interpolate 

splines that are adapted to the highest intensity pixels. Given 

the high variability of intensity in ultrasound images, Anas et 

al. [4] improved on this by incorporating phase symmetry, as 

well as bone shadow as additional features. Still, the process 

required manual interaction resulting in processing times of 

several minutes per volume image for both methods.  

While there are no other publications on the segmentation 

of the scaphoid, a high number of closely related methods have 

been published. Noble et al. [7] provide a comprehensive 

overview on ultrasound segmentation methods, not limited to 

orthopaedics. Hacihaliloglu [8] and Pandey [9] more 

specifically address bone segmentation and volumetric 

ultrasound in their survey publications. In contrast to our work, 

only few of the methods presented base on machine learning. 

In a previous publication [10], our group compared a number 

of state-of-the-art semantic segmentation architectures on 

segmentation of the femur, namely High-Resolution Net [11], 

Pyramid Scene Parsing Net [12], Deeplabv3+ [13] and UNet 

[14]. The SDE ranged from 0.56mm to 0.88mm, with 

Deeplabv3+ achieving the lowest error.  As data set size, 

ultrasound machine, annotation type and other related aspects 

are very similar to the problem at hand, its findings most likely 

apply, too. Accordingly, we trained Deeplabv3+ in an in-vitro 

study [5] on segmentation of the scaphoid. However, this 

publication does not include an isolated evaluation of the 

segmentation error. 

A critical problem for identification of well-suited 

methods on bone segmentation is the lack of comparability: 

There is no common dataset that serves as a benchmark. 

Accordingly, the reported accuracies vary strongly. On top of 

this, the actual performance of machine learning algorithms 

depends strongly on other aspects like hyperparameter tuning.  

Isensee et al. [15] addressed these problems by proposing a 

data set specific architecture, termed nnUNet. It builds on the 

well-known UNet but adapts the network and training 

parameters to the dataset at hand. Its self-adapting nature 

predestines it as an out-of-the-box benchmark tool.  

3 Methods 

3.1 Architectures for Segmentation 

For the use of automated segmentation in real-time 

applications, fast inference times and computational efficiency 

are key factors. Therefore, we decided to focus on 

architectures for 2D segmentation instead of volumetric 

segmentation. For the task at hand, we selected and trained two 

different architectures: First, we employed the Deeplabv3+ 

architecture [13] an encoder-decoder structure with spatial 

pyramid pooling. As a backbone, we used the Mobilenetv2 

[16], which is optimized for low capacity computation. This 

combination of performance and efficiency showed promising 

results in our previous work. In total, the network has 

2.141.762 trainable parameters. As a reference, we utilized the 

2D nnUNet [15], which is part of a framework for the 

automated design of medical segmentation models based on 

the UNet architecture [14]. This architecture includes 

29.966.112 trainable parameters. 

While both models exhibit an encoder-decoder structure 

with skip-connections, the Deeplabv3+ incorporates recent 

advances into its architecture: Via spatial pyramid pooling, it 

Figure 2: Example images of the SonixTOUCH (top row) and 

Affinity 50 systems (bottom row). Notice the image on the bottom 

right, which does not show the scaphoid, but the lunatum. 
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incorporates multi-scale context. The pyramid features can be 

computed efficiently using atrous convolutions, also known as 

dilated convolution. By disentangling convolution along the 

channel and spatial dimension into a depthwise seperable 

convolution, the number of trainable parameters and with it the 

model complexity can be reduced significantly. 

Table 1: Overview of data set splits. 

Data set Probands Machine # Images 

Training A B  SonixTOUCH 1620 

 D E F Affinity 1566 

Validation C (left) SonixTOUCH 405 

 G Affinity 290 

Test C (right) SonixTOUCH 405 

 H Affinity 290 

3.2 Datasets 

For the training of scaphoid segmentation in US images, we 

created an in-vivo dataset. This dataset consists of two subsets 

in order to represent different US imaging techniques. This 

allows for an analysis of the robustness against different 

technical setups for US image acquisition.  

The first subset was created on a SonixTOUCH 

(Ultrasonix, Richmond, BC) device, equipped with a 

motorized 3D probe. We captured images of three male 

subjects, with five different probe poses for left and right 

wrists respectively. This lead to a total of 30 volume images 

or 2430 slice images. These were split according to subjects: 

two subjects for training (1620 images), one subject for 

validation and testing (405 images both). 

For the second subset, we acquired images with an Affinity 50 

(Philips, Amsterdam, Netherlands) device equipped with a 

phased array 3D probe. We captured images of five different 

subjects, with five to ten different probe poses per subject. 

This resulted in a total of 37 volume images or 2146 slice 

images. Again, these were split corresponding to subjects: 

three subjects for training (1566 images), one subject for 

validation (290 images), and one subject for testing (290 

images). These images cover a bigger volume and also include 

neighbouring bones. See Figure 2 for an example. 

The combined dataset of 67 volume images thus 

consisted of 3186 images slices for training, 695 images slices 

for validation and 695 images slice for testing. These images 

were annotated manually, supported by an expert annotator. 

See Table 1 for additional details on proband distribution. 

Besides, we used an additional in-vitro dataset as 

described in our previous publication [5]. This dataset consists 

of 2376 automatically annotated phantom images, split in 1782 

images for training and 594 images for validation. 

3.3 Training 

We trained the Deeplabv3+ starting from weights pretrained 

on the in-vitro dataset. The models were trained for 300 epochs 

on a combination of dice loss and cross entropy loss, using 

Adam for optimization with a learning rate of 0.0001. Final 

models were obtained by early stopping after 189 epochs, 

based on best validation results regarding foreground dice. For 

nnUNet, training of the model was executed as specified by 

the framework, using stochastic gradient descent optimizer 

and a combination of dice loss and cross entropy loss with an 

initial learning rate of 0.01. The final model were obtained 

after training for three days, corresponding to about 900 

epochs. Pretraining on the in-vitro dataset showed no benefit. 

3.4 Evaluation 

All segmentation models were evaluated using the metric 

implementation of the nnUNet. This includes voxel-wise 

metrics like precision, recall and dice as well as distance-based 

metrics including the average symmetric surface distance 

(ASSD) and the 95-percentile of the average symmetric 

Hausdorff distance (HD). Both distance metrics have been 

computed in 3D per volume image, in order to better reflect 

effects on an intended use case of a volumetric pipeline.  

Table 2: Segmentation results: The 2D nnUNet outperforms the 

Deeplabv3+ architecture for voxel-wise metrics. For distance 

metrics, the Deeplabv3+ achieved lower errors. 

4 Results 

Table 2 shows test results for Deeplabv3+ and 2D nnUNet. 

The foreground dice coefficient appears rather low with 0.57 

for the Deeplabv3+ and 0.67 for the 2D nnUNet. The distance-

based metrics demonstrate a very good localization of the 

Metric Deeplabv3+ 2D nnUNet 

Precision 0.77 0.77 

Recall  0.50 0.63 

Dice 0.57 0.67 

ASSD (mm) 0.50 0.66 

Sym. HD 95% (mm) 2.39 3.76 
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prediction, with an average symmetric surface distance of 

0.5mm in case of Deeplabv3+ and 0.66mm for the 2D nnUNet. 

Moreover, Figure 3 shows a qualitative comparison of 

predicted segmentations for both architectures. The 

Deeplabv3+ tends to miss individual slices of the scaphoid 

surface in both datasets, but more often in the Affinity data. For 

the nnUNet, a tendency to segmenting adjacent carpal bones 

as scaphoids could be observed on the Ultrasonix data set. For 

the Affinity data, the opposite was true: The prediction was 

missing slices. Segmentation of the scaphoid itself was highly 

precise. This holds true for images of both ultrasound 

machines.  

Figure 3: Ultrasound image depicting the scaphoid, recognizable 

due to its characteristic “bone shadow”. Image (upper left), GT 

annotation (blue, upper right), prediction of 2D nnUNet (red, lower 

left), prediction of Deeplabv3+ (green, lower right). 

5 Discussion 

The architectures demonstrated strong performance in 

segmentation of the scaphoid bone. Even more, most of the 

errors found originate either from isolated segmented 

components adjacent to the scaphoid bone or from missing the 

first and last slices of the scaphoid. This is due to the limitation 

of 2D segmentation. In some of these cases, the networks may 

have outperformed the human annotators: Given the small 

gaps between carpal bones, their delineation is challenging.  

As the annotation resembles a thin line-like structure, 

metrics based on overlap appear to be rather low. The distance 

based metrics reveal promising results, which is confirmed by 

the qualitative analysis: Image slices depicting the scaphoid 

are segmented with an extremely high accuracy.   

Regarding robustness to different ultrasound system, both 

architectures proofed to be reliable. In a direct comparison, the 

nnUNet dominates in terms of voxel-wise metrics, while the 

Deeplabv3+ shows better performance in terms of distance-

based metrics. However, the nnUNet comes with an increase 

in inference time, which may not be feasible in the intended 

clinical use case. 

6 Conclusion and Outlook 

The segmentation results found are in line with previous 

work on segmentation of the scaphoid in ultrasound images by 

Beek et al. [6] and Anas et al [4]. In contrast to their approach, 

we presented a fully automatic and real-time capable 

framework. Regarding network architecture, the lightweight 

Deeplabv3+ achieved competitive results while offering faster 

inference. 

Future work will focus on incorporating 3D information 

while maintaining a fast implementation. A rather simple 

approach could be a connected component analysis. However, 

precise delineation of the individual carpal bones may proof 

intractable. Alternatively, a combination of 2D CNNs with 3D 

point-based architectures may be able to process 

comprehensive spatial information with fast inference times.  

As a next step, the presented work will be integrated into 

the full framework for intra-operative segmentation and 

registration of the scaphoid bone, enabling an ultrasound-

based navigated surgery. Given this framework, an evaluation 

of the osteosyntheses screw placement as well as processing 

times will be performed.  

Finally, as the network is trained on healthy bones only, 

its application is limited to certain, non-displaced fractures. 

The performance on displaced fractures with a visible gap in 

between the fragments is subject to future work. 
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